optuna.terminator.TerminatorCallback

optuna.terminator.TerminatorCallback(terminator=None)[source]

一个使用 Terminator 终止优化的回调函数。

此类实现了一个回调函数,它封装了 Terminator,以便可以与 optimize() 方法一起使用。

参数:

terminator (BaseTerminator | None) – 一个 Terminator 对象,通过评估优化的剩余空间和统计误差来决定是否终止优化。默认为一个具有默认 improvement_evaluatorerror_evaluatorTerminator 对象。

示例

from sklearn.datasets import load_wine
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

import optuna
from optuna.terminator import TerminatorCallback
from optuna.terminator import report_cross_validation_scores


def objective(trial):
    X, y = load_wine(return_X_y=True)

    clf = RandomForestClassifier(
        max_depth=trial.suggest_int("max_depth", 2, 32),
        min_samples_split=trial.suggest_float("min_samples_split", 0, 1),
        criterion=trial.suggest_categorical("criterion", ("gini", "entropy")),
    )

    scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True))
    report_cross_validation_scores(trial, scores)
    return scores.mean()


study = optuna.create_study(direction="maximize")
terminator = TerminatorCallback()
study.optimize(objective, n_trials=50, callbacks=[terminator])

另请参阅

请参考 Terminator 了解终止器机制的详细信息。

注意

作为实验性功能在 v3.2.0 中添加。接口在更高版本中可能会更改,恕不另行通知。请参阅 https://github.com/optuna/optuna/releases/tag/v3.2.0