optuna.terminator.TerminatorCallback
- class optuna.terminator.TerminatorCallback(terminator=None)[源代码]
一个使用 Terminator 终止优化的回调。
此类实现了一个包装了
Terminator的回调,以便可以与optimize()方法一起使用。- 参数:
terminator (BaseTerminator | None) – 一个终结器对象,通过评估优化空间和统计误差来决定是否终止优化。默认为一个具有默认
improvement_evaluator和error_evaluator的Terminator对象。
示例
from sklearn.datasets import load_wine from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold import optuna from optuna.terminator import TerminatorCallback from optuna.terminator import report_cross_validation_scores def objective(trial): X, y = load_wine(return_X_y=True) clf = RandomForestClassifier( max_depth=trial.suggest_int("max_depth", 2, 32), min_samples_split=trial.suggest_float("min_samples_split", 0, 1), criterion=trial.suggest_categorical("criterion", ("gini", "entropy")), ) scores = cross_val_score(clf, X, y, cv=KFold(n_splits=5, shuffle=True)) report_cross_validation_scores(trial, scores) return scores.mean() study = optuna.create_study(direction="maximize") terminator = TerminatorCallback() study.optimize(objective, n_trials=50, callbacks=[terminator])
另请参阅
有关终结器机制的详细信息,请参阅
Terminator。注意
在 v3.2.0 中添加为实验性功能。接口可能在更高版本中更改,恕不另行通知。请参阅 https://github.com/optuna/optuna/releases/tag/v3.2.0。