optuna.terminator.EMMREvaluator
- class optuna.terminator.EMMREvaluator(deterministic_objective=False, delta=0.1, min_n_trials=2, seed=None)[source]
评估一种遗憾,称为预期最小模型遗憾 (EMMR)。
EMMR 是优化过程中“预期最小简单遗憾”的上限。
预期最小简单遗憾是一个量,只有当优化过程找到了全局最优解时,该量才会收敛到零。
有关预期最小简单遗憾和算法的更多信息,请参阅以下论文
此外,还有我们解释此评估器的博客文章
- 参数:
示例
import optuna from optuna.terminator import EMMREvaluator from optuna.terminator import MedianErrorEvaluator from optuna.terminator import Terminator sampler = optuna.samplers.TPESampler(seed=0) study = optuna.create_study(sampler=sampler, direction="minimize") emmr_improvement_evaluator = EMMREvaluator() median_error_evaluator = MedianErrorEvaluator(emmr_improvement_evaluator) terminator = Terminator( improvement_evaluator=emmr_improvement_evaluator, error_evaluator=median_error_evaluator, ) for i in range(1000): trial = study.ask() ys = [trial.suggest_float(f"x{i}", -10.0, 10.0) for i in range(5)] value = sum(ys[i] ** 2 for i in range(5)) study.tell(trial, value) if terminator.should_terminate(study): # Terminated by Optuna Terminator! break
注意
在 v4.0.0 中作为实验性功能添加。接口可能在更新版本中更改,恕不另行通知。请参阅 https://github.com/optuna/optuna/releases/tag/v4.0.0。
方法
evaluate
(trials, study_direction)