optuna.pruners.NopPruner
- class optuna.pruners.NopPruner[source]
永不剪枝试验的剪枝器。
示例
import numpy as np from sklearn.datasets import load_iris from sklearn.linear_model import SGDClassifier from sklearn.model_selection import train_test_split import optuna X, y = load_iris(return_X_y=True) X_train, X_valid, y_train, y_valid = train_test_split(X, y) classes = np.unique(y) def objective(trial): alpha = trial.suggest_float("alpha", 0.0, 1.0) clf = SGDClassifier(alpha=alpha) n_train_iter = 100 for step in range(n_train_iter): clf.partial_fit(X_train, y_train, classes=classes) intermediate_value = clf.score(X_valid, y_valid) trial.report(intermediate_value, step) if trial.should_prune(): assert False, "should_prune() should always return False with this pruner." raise optuna.TrialPruned() return clf.score(X_valid, y_valid) study = optuna.create_study(direction="maximize", pruner=optuna.pruners.NopPruner()) study.optimize(objective, n_trials=20)
方法
prune
(study, trial)根据报告的值判断试验是否应该被剪枝。
- prune(study, trial)[source]
根据报告的值判断试验是否应该被剪枝。
请注意,库的用户不应该调用此方法。相反,
optuna.trial.Trial.report()
和optuna.trial.Trial.should_prune()
提供了用户接口,用于在目标函数中实现剪枝机制。- 参数:
study (Study) – 目标研究的 Study 对象。
trial (FrozenTrial) – 目标试验的 FrozenTrial 对象。修改此对象前请先复制一份。
- 返回:
一个布尔值,表示试验是否应该被剪枝。
- 返回类型: